Part Number Hot Search : 
TSOP11 33215JI DBL155G Q2W561L IRGPH50F F7304 3244AP D1024
Product Description
Full Text Search
 

To Download R3119N111E-TR-FE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  r3119n series 36v input voltage detector no.ea-187-110107 1 outline r3119n series are cmos-based 36v input (absolute maximum ratings: 50v) voltage detector with high detector threshold accuracy and ultra-low supply current. ea ch of those ics consists of a voltage reference unit, a comparator, resistors for detector threshold setti ng, an output driver and a hysteresis circuit. there are two types: r3119nxxxa has the c d pin for setting the output delay time. r3119nxxxe has the sense pin. the supply current of ic is only 3.3 a. the detector threshold is fixed in the ic and can be set with a step of 0.1v in the range of 2.3v to 12v. detector threshold ac curacy is 1.5%. the output type is nch open drain type. since the package for these ics is small sot-23-5, hi gh density mounting of the ics on board is possible. features ? supply current ......................................................................typ. 3.3 a ? operating voltage rang e......................................................1.2v to 36.0v (c d pin type: r3119nxxxa) 2.1v to 6.0v (sense pin type: r3119nxxxe) ? operating tem perature range ............................................. ? 40 c to 105 c ? detector threshol d range.................................................... 2.3v to 12.0v (0.1v steps) ( for other voltages, please refer to mark informations.) ? detector threshold accuracy................................................ 1.5% (t opt = 25 c) ? temperature-drift coefficient of detector threshold ............typ. 100ppm/ c ? output delay time (power on reset delay time)...............typ. 85ms (c d = 0.01 f, c d pin type) ? output delay time accuracy................................................. ? 50% to 80% (c d pin type: r3119nxxxa) ? output type........................................................................... nch open drain ? package ................................................................................sot-23-5 applications ? cpu and logic circuit reset ? battery checker ? battery back-up circuit ? power failure detector for digital home appliances
r3119n 2 block diagrams r3119nxxxa r3119nxxxe d out v dd v ref gnd delay circuit c d d out v dd v ref gnd sense selection guide the package type, the detector threshold and the versi on for the ics can be selected at the users? request. product name package quantity per reel pb free halogen free r3119nxxx ? -tr-fe sot-23-5 3,000 pcs yes yes xxx: the detector threshold can be designated in the r ange from 2.3v(023) to 12.0 v(120) in 0.1v steps. (for other voltages, please refer to mark informations.) ? : designation of version (a) with c d pin type (e) with sense pin type
r3119n 3 pin configurations ? sot-23-5 1 4 5 23 (mark side) pin descriptions ? sot-23-5 pin no. symbol description 1 v dd input pin 2 gnd ? ground pin 3 gnd ? ground pin 4 d out output pin ("l" at detection) c d r3119nxxxa connecting pin with exte rnal capacitor for setting delay time 5 sense r3119nxxxe voltage dete ctor voltage sense pin ? ) no. 2 and no.3 pins must be wired to the gnd plane when it is mounted on board.
r3119n 4 absolute maximum ratings symbol item rating unit r3119nxxxa ? 0.3 to 50.0 v dd supply voltage r3119nxxxe ? 0.3 to 7.0 v v out output voltage (d out pin) ? 0.3 to 7.0 v v cd output voltage (c d pin) r3119nxxxa ? 0.3 to 7.0 v sense input voltage (sen se pin) r3119nxxxe ? 0.3 to 50.0 v i out output current (d out pin) 20 ma p d power dissipation (sot-23-5) ? 420 mw t opt operating temperature range ? 40 to 105 c t stg storage temperature range ? 55 to 125 c ? ) for power dissipation, please refer to package information. absolute maximum ratings electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safe ty for both device and sy stem using the device in the field. the functional operation at or over these absolute maximum ratings is not assured.
r3119n 5 electrical characteristics ? r3119nxxxa (c d pin type) the specification in is checked and guaranteed by design engineering at ? 40 c t opt 105 c. top t = 25 c symbol item conditions min. typ. max. unit t opt = 25 c 0.985 1.015 -v det detector threshold v dd pin ? 40 c t opt 105 c 0.970 1.020 v v hys detector threshold hysteresis 3.5 5 6.5 % v dd = -v det ? 0.1v 3.3 5.6 i ss supply current v dd = -v det + 1.0v 3.3 5.5 a v ddh maximum operating voltage 36 v t opt = 25 c 1.2 v ddl minimum operating voltage ? ? 40 c t opt 105 c 1.25 v v dd = 1.5v, v ds = 0.05v 230 a 2.3v -v det < 2.6v v dd = 2.2v v ds = 0.5v 2.8 2.6v -v det < 3.0v v dd = 2.5v v ds = 0.5v 3.3 i out output current (driver output pin) 3.0v -v det v dd = 2.9v v ds = 0.5v 3.5 ma i leak nch driver leakage current v dd = 36v, v ds = 6.0v 0.2 a -v det / t opt detector threshold temperature coefficient ? 40 c t opt 105 c 100 ppm / c t delay detector output delay time v dd = 1.5v -v det + 2.0v c d = 0.01 f 45 85 150 ms t opt = 25 c except for detector threshold temperature coefficient. ? ) this value is the minimum input voltage when the output voltage is 0.1v or less at detection. (the pull-up resistance; 100k , the pull-up voltage; 5.0v) recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. and the semiconductor dev ices may receive serious damage when they continue to operate over the recommended operating conditions.
r3119n 6 ? r3119nxxxe (sense pin type) the specification in is checked and guaranteed by design engineering at ? 40 c t opt 105 c. top t = 25 c symbol item conditions min. typ. max. unit v dd operating voltage 2.1 ? 6 v t opt = 25 c 0.985 1.015 -v det detector threshold sense pin v dd = 6v ? 40 c t opt 105 c 0.970 1.020 v v hys detector threshold hysteresis v dd = 6v 3.5 5 6.5 % v dd = 6v, v sense = -v det ? 0.1v 3.3 5.5 i ss supply current v dd = 6v, v sense = -v det + 1.0v 3.3 5.5 a r sense sense resistor 4.5 120 m v sense < -v det v dd = 2.1v v ds = 0.05v 420 a i out output current (driver output pin) v sense < -v det v dd = 2.2v v ds = 0.5v 2.8 ma i leak nch driver leakage current v dd = 6v, v sense = 36v, v ds = 6.0v 0.2 a -v det / t opt detector threshold temperature coefficient ? 40 c t opt 105 c 100 ppm / c t plh output delay time v dd = 6v v sense = 1.5v -v det + s v sense input voltage (sense pin) 0 36 v all of unit are tested and specified under load conditions such that tj t opt = 25 c except for detector threshold temperature coefficient and output delay time. ? ) minimum operating voltage of "sense pin type" is mi nimum supply voltage to obtain correct detection voltage. recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconduc tor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. and the semiconductor dev ices may receive serious damage when they continue to operate over the recommended operating conditions.
r3119n 7 timing chart gnd gnd detect delay time (t reset ) output delay time (t delay ) supply voltage (v dd ) output voltage (v out ) c d pin voltage ( - v det ) (+v det ) detector threshold released voltage c d pin threshold voltage (v tcd ) when the supply voltage, which is higher than released voltage, is forced to v dd pin, charge to an external capacitor starts, then c d pin voltage increases. until the c d pin voltage reaches to c d pin threshold voltage, output voltage maintains "l". when the c d pin voltage becomes higher than c d pin threshold voltage, output voltage is reversed from "l" to "h". where the time in terval between the rising edge of supply voltage and output voltage reverse point means output delay time. when the output voltage reverses from "l" to "h", the exte rnal capacitor starts to discharge. therefore, when lower voltage than the detector threshold voltage is forced to v dd pin, the output voltage reverses from "h" to "l" thus the detect delay time is constant no t being affected by the external capacitor. ? output delay time output delay time (t delay ) can be calculated with the next form ula using the external capacitor: t delay (s) = 8.5 10 6 c d (f) definition of output delay time output delay time (t delay ) is defined as follows: under the condition of the output pin (d out ) is pulled up through a resistor of 100k to 5v, the time interval between the rising edge of v dd pulse from 1.5v to (-v det ) + 2.0v pulse voltage is supplied, the becoming of the output voltage to 2.5v. supply voltage (v dd ) output voltage (v out ) -v det + r3119nxxxa
r3119n 8 operation ? operation of r3119nxxxa (c d pin type) v ref ra rb rc v dd d out gnd tr.1 nch com p arator delay circuit c d d out pin should be pulled-up to an external voltage level. block diagram of external capacitor connection 13 5 a b t dela y 2 4 gnd gnd v ddl - v det +v det detector threshold released voltage minimum operating voltage pull-up voltage detector threshold hysteresis supply voltage (v dd ) output voltage (v out ) t reset detect delay time step 1 2 3 4 5 comparator ( ? ) pin input voltage i ii ii ii i comparator output l h indefinite h l tr.1 off on indefinite on off output tr. (nch) off on indefinite on off i v dd rb + rc ra + rb + rc ii v dd rb ra + rb operation diagram ? explanation of operation step 1. the output voltage is equal to the pull-up voltage. step 2. at point "a", v ref v dd (rb + rc)/(ra + rb + rc) is true, as a result, the output of comparator is reversed from "l" to "h", therefore the output voltage become s the gnd level. the voltage level of point a means a detector threshold voltage (-v det ). step 3. when the supply voltage is lower than the minimum operating voltage, t he operation of the output transistor becomes indefinite. the output voltage is equal to the pull-up voltage. step 4. the output voltage is equal to the gnd level. step 5. at point "b", v ref v dd rb/(ra + rb) is true, as a result, the output of comparator is reversed from "h" to "l", then the output voltage is equal to the pull-up vo ltage. the voltage level of point b means a released voltage (+v det ). ? ) the difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis. output delay time
r3119n 9 ? operation of r3119nxxxe (sense pin type) v ref ra rb rc v dd d out gnd tr.1 nch com p arato r sense d out pin should be pulled-up to an external voltage level. block diagram + v det - v det 1 2 3 v ddl gnd gnd a b t plh t phl supply voltage (v dd ) output voltage (v out ) sense pin voltage (v sense ) detector threshold hysteresis detector threshold released voltage pull-up voltage detect delay time output delay time minimum operating voltage step 1 2 3 comparator ( ? ) pin input voltage i ii i comparator output l h l tr.1 off on off output tr. (nch) off on off i v sense rb + rc ra + rb + rc ii v sense rb ra + rb operation diagram ? explanation of operation step 1. sense pin voltage is larger than detector threshol d; the output voltage is equal to the pull-up voltage. step 2. at point "a", v ref v sense (rb + rc)/(ra + rb + rc) is true, as a result, the out put of comparator is reversed from "l" to "h", therefore the output voltage become s the gnd level. the voltage level of point a means a detector threshold voltage (-v det ). (when the supply voltage is higher than the minimum operating voltage, the output voltage is equal to the gnd level.) step 3. at point "b", v ref v sense rb/(ra + rb) is true, as a result, the output of comparator is reversed from "h" to "l", then the output voltage is equal to the pull-up voltage. the voltage level of point b means a released voltage (+v det ). ? ) the difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.
r3119n 10 power supply injection order the r3119nxxxe series supervise the voltage of the sense pin. v dd pin and sense pin can be used at the same voltage level. likewise, v dd pin and sense pin can be used at the different voltage level. if the v dd pin and sense pin are used at different voltage level, regarding the start-up sequence, force the voltage level to v dd pin prior to the sense pin. if the sense pin voltage is equal or more than the released voltage (+v det ), d out pin becomes "h"(fig.1). besides, a voltage beyond v dd pin is also acceptable to sense pin. t v dd v out v sense +v det fig.1 turn on sequence
r3119n 11 detector operation vs. glitch input voltage to the v dd pin or sense pin when the r3119n is at released, if the pulse voltage which the detector threshold or lower voltage, the graph below means that the relation between pulse width and t he amplitude of the swing to keep the released state for the r3119n. r3119nxxxa r3119nxxxe 350 200 300 100 250 150 50 0 1 10 100 1000 over drive voltage (mv) pulse width ( s) r3119n023a r3119n120a 350 200 300 100 250 150 50 0 1 10 100 1000 over drive voltage (mv) pulse width ( s) r3119n023e r3119n120e detector threshold (-v det ) over drive pulse width sense voltage (v sense ) v sense input waveform this graph shows the maximum pulse conditions to keep the released voltage. if the pulse with larger amplitude or wider width than the graph above, is input to the v dd pin (r3119nxxxa) or to the sense pin (r3119nxxxe), the reset signal may be output.
r3119n 12 typical application ? r3119nxxxa (c d pin type) (1) input voltage to r3119nxxxa is equal to input voltage to cpu r v dd reset cpu gnd v dd 100k (2) input voltage to r3119nxxxa is unequal to input voltage to cpu r v dd reset cpu gnd 100k ? r3119nxxxe (sense pin type) (1) input voltage to r3119nxxxe is equal to input voltage to cpu r v dd reset cpu gnd v dd 100k
r3119n 13 (2) input voltage to r3119nxxxe is unequal to input voltage to cpu r v dd reset cpu gnd 100k test circuits ? r3119nxxxa (c d pin type) i ss v in v dd c d gnd d out a r3119nxxxa series 100k supply current test circuit detector threshold test circuit v ds i out v in r3119nxxxa series a v dd c d gnd d out c d gnd r3119nxxxa series d out 100k + 2.0v 1.5v 10nf nch driver output current test circ uit output delay time test circuit
r3119n 14 ? r3119nxxxe (sense pin type) i ss v dd gnd r3119nxxxe series d out a 6v sense 100k supply current test circuit detector threshold test circuit v in v dd sense gnd r3119nxxxe series d out v ds i out a 6v sense gnd r3119nxxxe series d out 100k + 2.0v 1.5v nch driver output current test circ uit output delay time test circuit
r3119n 15 typical characteristics 1) supply current vs. input voltage r3119n023a r3119n077a 016 82028 12 436 24 32 input voltage v dd (v) supply current i ss ( a) 0 6 3 2 1 5 4 t opt =105 c t opt =25 c t opt =- 40 c 016 82028 12 436 24 32 input voltage v dd (v) supply current i ss ( a) 0 6 3 2 1 5 4 t opt =105 c t opt =25 c t opt =- 40 c r3119n120a 016 82028 12 436 24 32 input voltage v dd (v) supply current i ss ( a) 0 6 3 2 1 5 4 t opt =105 c t opt =25 c t opt =- 40 c 2) detector threshold vs. temperature r3119n023a/e r3119n077a/e temperature topt ( c) detector threshold v det (v) 2.24 2.48 2.44 2.40 2.36 2.32 2.46 2.42 2.38 2.34 2.30 2.28 2.26 -40 75 50 025 -25 105 100 -v det +v det temperature topt ( c) detector threshold v det (v) 7.60 8.20 8.10 8.00 7.90 7.80 8.15 8.05 7.95 7.85 7.75 7.70 7.65 -40 75 50 025 -25 105 100 -v det +v det
r3119n 16 r3119n120a/e temperature topt ( c) detector threshold v det (v) 11.90 12.90 12.70 12.50 12.30 12.80 12.60 12.40 12.20 12.10 12.00 -40 75 50 025 -25 105 100 -v det +v det 3) output voltage vs. input voltage r3119n023a/e r3119n077a/e 0 2.0 1.0 1.5 2.5 0.5 3.0 input voltage v dd (v) output voltage v out (v) 0 6 3 2 1 4 5 t opt =- 40 c t opt =25 c t opt =105 c 06 24 8 5 37 19 input voltage v dd (v) output voltage v out (v) 0 6 3 2 1 4 5 t opt =- 40 c t opt =25 c t opt =105 c r3119n120a/e 012 4810 6 214 input voltage v dd (v) output voltage v out (v) 0 6 3 2 1 4 5 t opt =- 40 c t opt =25 c t opt =105 c
r3119n 17 4) nch driver output current vs. input voltage r3119n023a r3119n077a 0 2.0 1.0 2.5 1.5 0.5 3.0 input voltage v dd (v) nch driver output current i out (ma) 0 12 6 8 10 4 2 t opt =- 40 c t opt =25 c t opt =105 c 07 39 56 28 4 110 input voltage v dd (v) nch driver output current i out (ma) 0 12 6 8 10 4 2 t opt =- 40 c t opt =25 c t opt =105 c r3119n120a 012 514 911 313 7 1610 48 215 input voltage v dd (v) nch driver output current i out (ma) 0 12 6 8 10 4 2 t opt =- 40 c t opt =25 c t opt =105 c 5) nch driver output current vs. v ds r3119n023a r3119n077a 0 1.5 2.5 1.0 2.0 0.5 3.0 v ds (v) nch driver output current i out (ma) 0 8 3 1 5 4 2 6 7 v dd =2.2v v dd =2.0v v dd =1.5v 04 25 3 16 v ds (v) nch driver output current i out (ma) 0 16 6 2 10 8 4 12 14 v dd =3.0v v dd =2.5v v dd =3.5v v dd =5.0v v dd =7.0v v dd =2.0v v dd =1.5v
r3119n 18 r3119n120a 04 25 3 16 v ds (v) nch driver output current i out (ma) 0 16 6 2 10 8 4 12 14 v dd =3.0v v dd =2.5v v dd =3.5v v dd =5.0v v dd =8.0~11.0v v dd =2.0v v dd =1.5v 6) output delay time vs. external capacitance (t opt = 25 c) r3119n023a r3119n077a 1000 10 100 1 0.1 0.01 0.0001 0.001 0.01 0.1 external capacitance c d ( f) delay time t delay /t reset (ms) t reset t delay 1000 10 100 1 0.1 0.01 0.0001 0.001 0.01 0.1 external capacitance c d ( f) delay time t delay /t reset (ms) t reset t delay r3119n120a 1000 10 100 1 0.1 0.01 0.0001 0.001 0.01 0.1 external capacitance c d ( f) delay time t delay /t reset (ms) t reset t delay
r3119n 19 7) output delay time vs. temperature (c d = 0.01 f) r3119n023a r3119n077a temperature topt ( c) output delay time t delay (ms) 30 170 130 110 90 70 150 50 -40 75 50 025 -25 105 100 temperature topt ( c) output delay time t delay (ms) 30 170 130 110 90 70 150 50 -40 75 50 025 -25 105 100 r3119n120a temperature topt ( c) output delay time t delay (ms) 30 170 130 110 90 70 150 50 -40 75 50 025 -25 105 100 8) supply current vs. input voltage r3119nxxxe (at released) r3119nxxxe (at detected) 012 4 6 35 input voltage v dd (v) supply current i ss ( a) 0 4.0 1.5 1.0 0.5 2.5 2.0 3.5 3.0 t opt =105 c t opt =25 c t opt =- 40 c 012 4 6 35 input voltage v dd (v) supply current i ss ( a) 0 4.0 1.5 1.0 0.5 2.5 2.0 3.5 3.0 t opt =105 c t opt =25 c t opt =- 40 c
r3119n 20 9) detector threshold vs. input voltage r3119n023e r3119n077e 2.0 2.5 3.0 5.0 6.0 4.0 3.5 4.5 5.5 input voltage v dd (v) detctor threshold v det (v) 2.24 2.36 2.30 2.28 2.26 2.34 2.32 t opt =105 c t opt =25 c t opt =- 40 c 2.0 2.5 3.0 5.0 6.0 4.0 3.5 4.5 5.5 input voltage v dd (v) detctor threshold v det (v) 7.50 7.90 7.70 7.60 7.75 7.65 7.55 7.85 7.80 t opt =105 c t opt =25 c t opt =- 40 c r3119n120e 2.0 2.5 3.0 5.0 6.0 4.0 3.5 4.5 5.5 input voltage v dd (v) detctor threshold v det (v) 11.6 12.3 12.0 11.8 12.1 11.9 11.7 12.2 t opt =105 c t opt =25 c t opt =- 40 c 10) detector threshold hysteresis vs. input voltage r3119n023e r3119n077e 2.0 2.5 3.0 5.0 6.0 4.0 3.5 4.5 5.5 input voltage v dd (v) detctor threshold hysteresis v hys (v) 0.08 0.15 0.12 0.10 0.13 0.11 0.09 0.14 t opt =- 40 c t opt =25 c t opt =105 c 2.0 2.5 3.0 5.0 6.0 4.0 3.5 4.5 5.5 input voltage v dd (v) detctor threshold hysteresis v hys (v) 0.28 0.48 0.44 0.36 0.40 0.32 t opt =- 40 c t opt =25 c t opt =105 c
r3119n 21 r3119n120e 2.0 2.5 3.0 5.0 6.0 4.0 3.5 4.5 5.5 input voltage v dd (v) detctor threshold hysteresis v hys (v) 0.42 0.78 0.70 0.54 0.62 0.46 0.74 0.58 0.66 0.50 t opt =- 40 c t opt =25 c t opt =105 c 11) output voltage vs. sense pin input voltage (t opt = 25 c) (d out pull up to v dd with 100k ) r3119n023e r3119n077e v dd =6.0v v dd =4.0v v dd =2.1v 0 2.5 1.0 3.5 2.0 1.5 3.0 0.5 4.0 sense voltage v sense (v) output voltage v out (v) 0 7 6 3 2 1 4 5 v dd =6.0v v dd =4.0v v dd =2.1v 06 24 8 5 37 19 sense voltage v sense (v) output voltage v out (v) 0 7 6 3 2 1 4 5 r3119n120e v dd =6.0v v dd =4.0v v dd =2.1v 010 48 612 214 sense voltage v sense (v) output voltage v out (v) 0 7 6 3 2 1 4 5
r3119n 22 12) nch driver output current vs. input voltage r3119nxxxe 04 25 3 16 input voltage v in (v) nch driver output current i out (ma) 0 12 6 4 2 10 8 v ds =0.5v t opt =- 40 c t opt =25 c t opt =105 c 13) nch driver output current vs. v ds r3119nxxxe 04 25 3 16 v ds (v) nch driver output current i out (ma) 0 16 6 2 10 8 4 12 14 v dd =3.0v v dd =2.5v v dd =3.5v~6.0v v dd =2.1v t opt =25 c
r3119n 23 technical notes when r3119nxxxa/e is used in fig.a, fig.b, if the val ue of r1 is set excessively large, the dropdown voltage caused by the consumption current of ic itself, may vary the detector threshold and the release voltage. also, if the value of r1 is set excessively large, there may be delay in start-up and may cause oscillation generated by cross conduction current. when r3119nxxxa is used in fig.c, if the value of r1 is set excessively large, the dropdown voltage caused by the consumption current of ic it self, may vary the detector threshold and the released voltage. also, if the value of r1 and r2 is set excessively large, there ma y be delay in start-up and may cause oscillation generated by cross conduction current. when r3119nxxxa/e is used in fig.d, fig.e, if the val ue of r1 is set excessively large, the dropdown voltage caused by the consumption current of ic itself may vary the detector threshold and the release voltage. also, if the value of r1 is set excessively large, there may be delay in start-up and may cause oscillation generated by cross conduction current. furthermore, if the value of r1 is set large and the value of r3 is set small, released voltage level may shift and the minimum operating voltage may differ. if the value of r3 is set excessively small from r1, release may not occur and may cause oscillation. r1 r3119nxxxa series gnd v dd v dd d out c d r2 r1 gnd d out r3119nxxxa series v dd v dd c d r1 r3119nxxxe series gnd v dd v dd d out sense fig.a fig.b fig.c r3 r1 v dd gnd v dd d out sense r3119nxxxe series r3 r1 gnd d out r3119nxxxa series v dd v dd c d fig.d fig.e
3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?4ijo:plpibnbp$?df *oufsobujpobm4bmft
 4ijo:plpibnb ,piplvlv :plpibnb$juz ,bobhbxb +bqbo 1ipof 'by  3*$0)&6301& /&5)&3-"/%4
#7 ?4fnjdpoevdups4vqqpsu$fousf 1spg8),fftpnmbbo %-"ntufmwffo 5if/fuifsmboet 10#py "$"ntufmwffo 1ipof 'by  3*$0)&-&$530/*$%&7*$&4,03&"$p -ue qpps )bftvohcvjmejoh  %bfdijepoh (bohobnhv 4fpvm ,psfb 1ipof 'by  3*$0)&-&$530/*$%&7*$&44)"/()"*$p -ue 3ppn /p#vjmejoh #j#p3pbe 1v%poh/fxejtusjdu 4ibohibj  1fpqmft3fqvcmjdpg$ijob 1ipof 'by  3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?5bjqfjp$?df 3ppn ' /p )fohzboh3e 5bjqfj$juz 5bjxbo 30$
1ipof 'by  iuuqxxxsjdpidpn-4* 5ifqspevdutboeuifqspevdutqfdjpdbujpoteftdsjcfejouijtepdvnfoubsftvckfduupdibohfps ejtdpoujovbujpopgqspevdujpoxjuipvuopujdfgpssfbtpot tvdibtjnqspwfnfou5ifsfgpsf cfgpsf efdjejohupvtfuifqspevdut qmfbtfsfgfsup3jdpitbmftsfqsf tfoubujwftgpsuifmbuftu jogpsnbujpouifsfpo 5ifnbufsjbmtjouijtepdvnfounbzopucfdpqjfepspuifsxjtfsfqspevdfejoxipmfpsjoqbsu xjuipvuqsjpsxsjuufodpotfoupg3jdpi 1mfbtfcftvsfupublfbozofdfttbszgpsnbmjujftvoefssfmfwboumbxtpssfhvmbujpotcfgpsf fyqpsujohpspuifsxjtfubljohpvupgzpvsdpvouszuifqspevdut psuifufdiojdbmjogpsnbujpo eftdsjcfeifsfjo 5ifufdiojdbmjogpsnbujpoeftdsjcfejouijtepdvnfoutipxtuzqjdbmdibsbdufsjtujdtpgboe fybnqmfbqqmjdbujpodjsdvjutgpsuifqspevdut5ifsfmfbtfpgt vdijogpsnbujpojtopuupcf dpotusvfebtbxbssbouzpgpsbhsboupgmjdfotfvoefs3jdpit psbozuijseqbsuztjoufmmfduvbm qspqfsuzsjhiutpsbozpuifssjhiut  5ifqspevdutmjtufejouijtepdvnfoubsfjoufoefeboeeftjhofe gpsvtfbthfofsbmfmfduspojd dpnqpofoutjotuboebsebqqmjdbujpot p$?dffrvjqnfou ufmfdpnnvo jdbujpofrvjqnfou  nfbtvsjohjotusvnfout dpotvnfsfmfduspojdqspevdut bnvtfnfou frvjqnfoufud
5iptf dvtupnfstjoufoejohupvtf bqspevdujobobqqmjdbujposfrvjsjohfyusfnfrvbmjuzboesfmjb cjmjuz  gpsfybnqmf jobijhimztqfdjpdbqqmjdbujpoxifsfuifgbjmvsf psnjtpqfsbujpopguifqspevdu dpvmesftvmujoivnbojokvszpsefbui bjsdsbgu tqbdfwfijdmf ovdmfbssfbdupsdpouspmtztufn  usb$?ddpouspmtztufn bvupnpujwfboe usbotqpsubujpofrvjqnfou dpncvtujpofrvjqnfou tbgfuz efwjdft mjgftvqqpsutztufnfud
tipvmepstudpoubduvt 8fbsfnbljohpvsdpoujovpvtf$?psuupjnqspwfuifrvbmjuzboesfmjbcjmjuzpgpvsqspevdut cvu tfnjdpoevdupsqspevdutbsfmjlfmzupgbjmxjuidfsubjoqspcbcjm juz*opsefsupqsfwfoubozjokvszup qfstpotpsebnbhftupqspqfsuzsftvmujohgspntvdigbjmvsf dvt upnfsttipvmecfdbsfgvmfopvhi upjodpsqpsbuftbgfuznfbtvsftjouifjseftjho tvdibtsfevoeb odzgfbuvsf psfdpoubjonfou gfbuvsfboegbjmtbgfgfbuvsf8fepopubttvnfbozmjbcjmjuz pssftqpotjcjmjuzgpsbozmpttps ebnbhfbsjtjohgspnnjtvtfpsjobqqspqsjbufvtfpguifqspevdut  "oujsbejbujpoeftjhojtopujnqmfnfoufejouifqspevduteftdsjcfejouijtepdvnfou  1mfbtfdpoubdu3jdpitbmftsfqsftfoubujwfttipvmezpvibwfboz rvftujpotpsdpnnfout dpodfsojohuifqspevdutpsuifufdiojdbmjogpsnbujpo 3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz  ricoh presented with the japan management quality award for 1999 . ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.  ricoh awarded iso 14001 certification. the ricoh group was awarded iso 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. our current aim is to obtain iso 14001 certification for all of our business offices. ricoh completed the organization of the lead-free production for all of our products. after apr. 1, 2006, we will ship out the lead free products only. thus, all products that will be shipped from now on comply with rohs directive.


▲Up To Search▲   

 
Price & Availability of R3119N111E-TR-FE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X